
Spatial analysis of a designed experiment

RA Fisher’s 3 principles of experimental design

randomization ⇒ unbiased estimate of treatment effect
replication ⇒ unbiased estimate of error variance
blocking = “local control of variation” ⇒ eliminate unwanted sources
of variation

Any experiment: experimental units (eu’s) are not identical

Lots of sources of variation:

Field experiment: variation is often spatially structured

elevation / moisture / drought; soil type
proximity to field edge
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Uniformity trials

Uniformity trial

Common in early - mid 20’th century in US and UK
“Experiment without a treatment”
before using an experimental field, plant a crop, harvest in small plots
look at how variation is structured across the field

Usually find that high yielding plots are surrounded by other
high-yielding plots

and similarly for low-yielding plots.

E.g. Mercer and Hall wheat yield data (next slide)

Classic data set (1910 study, 1911 paper)
Experimental field planted in wheat. No treatments - all the same
Harvested in small plots: 3.3m E-W, 2.51m N-S
ca 2-fold variation in yield
Key point: variation is spatially correlated
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Blocking

Traditional approach is to control unwanted variability by blocking

Blocks are groups of similar experimental units

human study: group by sex and age-group (e.g. male, age 20-29)
field study: group based on knowledge of field, almost always adjacent
plots
e.g. low part of field = one block, high part = second block
very useful. Typical efficiency = 110% - 120%
i.e. Var CRD = 1.1 Var RCBD - 1.2 Var RCBD
Alternatively, 10 replicates in an RCBD have same precision as 11-12
replicates in a CRD
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Blocking: practical issues

3 issues/problems:

1) analysis model is constant block effect (same for all plots w/i that
block). But, variation may be smoother
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Blocking: practical issues

2) often hard to know where to place blocks (e.g. M-H data)
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Blocking: practical issues

3) want blocks to be small, but may need to be large to include all
trts

small blocks more likely to be homogeneous
this (in my mind) is why one rep per trt and block is so common

Plant breeders often have very large numbers of treatments

trts = varieties of plant, often 128 or 256.

often use very ingenious incomplete block designs
Complete block: all treatments in each block
Breeders: subset treatments in each block, e.g. 16 trts per incomplete
block
often “resolvable”: collection of small blocks makes a large block that
has all trts
8 incomplete blocks, each with 16 diff trts, includes all 128 trts
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Consequences of spatial correlation

Nearby plots are clearly similar to each other.

I sometimes see the argument that the usual ANOVA on a field
experiment is wrong because of the spatial correlation

Remember: ANOVA makes three assumptions:

errors are normally distributed
errors have equal variance
errors are independent

Which is most important??
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Consequences of spatial correlation

A: independence

So, you do an experiment on plots that are spatially correlated
Is ANOVA wrong, because it violates the independence assumption?
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Consequences of spatial correlation

I say no, at least for a designed experiment:

the independence comes from the random assignment of treatments to
plots.
So there is nothing wrong about ignoring spatial correlation
But accounting for spatial correlation may be a better analysis

increased precision of estimates
increased power of tests

analogous to sampling spatially organized things

a simple random sample, assuming independence, is just fine
OLS estimates (usual estimates) and tests are NOT wrong

Note: very different from ignoring subsampling or repeated meas.

Why is correlation among rep. meas. a problem, but spatial
correlation is not?

Treatment randomly assigned in spatial study
Time not randomly assigned in rep. meas.
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GLS and eGLS

GLS estimates that account for spatial correlation will be better

When spatial correlation model and parameters known

Obvious problems:

don’t know the form of spatial correlation (what model?)
and certainly don’t know correlation parameters
(e.g., nugget, range, sill)

need to estimate these from data

If want to be accurate, call the procedure: eGLS

Algorithm:
1 Assume independence (to get started)
2 estimate fixed effect parameters
3 use residuals to estimate VC parameters
4 repeat 2, 3 until convergence
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eGLS in practice

Various practical concerns

1) Frequentist inference conditions on estimated VC parameters

Ignores uncertainty in the VC parameters
Go Bayes if want to incorporate VC uncertainty

2) small sample distribution eGLS estimates not known

Approximate as T with an estimated df
Satterthwaite approximation (Giesbrecht and Burns 1985 extension)

3) Estimates of VC parameters are biased when obs have spatial
correlation

Kenward-Rogers method implements a bias correction to VC estimates
then applies Satterthwaite

Lots of ad-hoc adjustments

But works relatively well (in simulation studies)

unless study has very few replicates
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Illustration

Consider a field, spatially correlated plots (details don’t matter)

Design a study to compare 5 treatments, 50 plots

Consider two experimental designs: CRD or blocks (RCBD)

and two analyses: usual or spatial analysis

Generate data from “a study” using a design (CRD, RCBD)
Estimate parameters using a model (usual, spatial), repeat 1000 times
Focus on estimated difference between two treatments: µ̂1 − µ̂2
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Illustration

Design Analysis Average sd=se
√

Ave est Var ratio

CRD – 2.010 0.870 0.875 1.006
“ spatial 2.003 0.282 0.244 0.868

RCBD – 2.006 0.299 0.302 1.011
“ spatial 2.003 0.266 0.254 0.953

Bias of estimates: Compare ave. estimate to truth (=2.00)

Ignoring spatial correlation still unbiased

Precision of estimates: look at sd of estimates

Blocking substantially increases precision (much more than 10%)
Spatial analysis further increases precision

A lot for CRD, a bit for RCBD

Is the precision well estimated (equiv. of se = sd/
√
n)

Non-spatial analysis: fine (ratios close to 1)
Spatial analyses: tends to underestimate se
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Papadakis’s method

Old method - original paper in 1937

Concept:

Use neighbors to “predict” what an obs. would be like if no treatment
Use this value as a covariate in model to remove “local” spatial
variation

Details:

Fit preliminary model Yij = µ+ τi + εij
Estimate residuals = ε̂ij = Yij − (µ̂+ τ̂i ), i.e. obs. - trt mean
calculate r̄ij = average residual for each obs. by ave. resids of neighbors
do not include residual for self
include r̄ij as a covariate in the model

Yij = µ+ τi + β r̄ij + γij
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Papadakis method

Divides “error” into two components:

a) contribution of neighbors: β r̄ij
b) “intrinsic error”: γij

Consequences:

obs. surrounded by “high” neighbors (relative to their treatment
means) are expected to be high
surrounded by “low” expected to be low
if β̂ ≈ 0, little to no spatial correlation

neither blocking nor Papadakis adjustment very useful

Not easily implemented in modern software

Can exploit relationship between Papadakis and spatial models for areal
data
Modern version: nearest neighbor adjustment
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Spatial linear model

Notation: i : Treatment, j : Replicate

Yij = µ+ τi + εij

εij ∼ mvN(0,Σ)

Just like the usual linear model (ANOVA or regression or
combination), but errors are correlated

VC matrix, Σ, usually specified as a geostatistical model

VC matrix is for plot errors, not observations
Parameterized in terms of correlation or covariance

Common to assume equal variances and to use one of the usual
variogram models

e.g. Exponential, Spherical, Matern
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Spatial Linear Model

Notice this is very much like models for repeated measures data
Treatments assigned to subjects,
each subject measured more than once
observations on same subject probably correlated
402 discussed various models for those correlations
correlation depends on time lag between observations

Spatial is similar; now correlation depends on distance, not time lag

Can add additional trend to the fixed effects model

Yij = µ+ τi + βE Eastingij + βN Northingij + εij

εij ∼ mvN(0,Σ)

Or block effects (αj)

Yij = µ+ τi + αj + εij

εij ∼ mvN(0,Σ)
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Cullis Gleeson model

Developed for agricultural data: crop planted in rows, plots on a grid

does not have to be a square grid; can have different spacing along
rows from across rows

Cullis and Gleeson (1991, Biometrics) model accounts for correlation
in two dimensions

AR(1) model with one correlation along the rows (x coordinate)
AR(1) model with different correlation across the rows (y coordinate)
Cor ε(s1), ε(s2) = ρ∆x

x ρ∆y
y

Implemented in ASREML

Can fit in SAS as anisotropic exponential covariance

R doesn’t (as far as I can tell) include anisotropic correlation models

Fudge it when ρx/ρy known by rescaling coordinates
Same trick as used with geometric anisotropy
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Example: Alliance wheat trial

Variety trial in wheat. 56 varieties, 4 reps of each, blocked

Exploratory analysis:

Fit a model without blocks
(we are interested in the spatial effect, after all)
plot residuals for each location

see next slide

spatial pattern in residuals is obvious
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Calculating GLS estimates

Remember that GLS estimates require a Σ matrix

Two ways to estimate Σ:

Variogram on OLS residuals
Estimate Σ and β together (REML)

1) Estimate a variogram from residuals is an approximation
Why is this an approximation?
A: residuals are negatively correlated
often ignored when error df/n close to 1
not so here! because only 4 reps / entry
error df/n = 0.75
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Variogram looks linear, even when extend max lag distance to 20

Suggests a spatial trend

Add Northing, Easting, and their product to model

Product because of blob of extreme residuals in one corner of field

Variogram of those residuals looks much nicer

Could use this variogram to estimate Σ, then use GLS to estimate β̂

But, notice the problem:

Σ̂ based on OLS residuals
GLS estimates of β̂ are not the same as the OLS estimates
so residuals are not the same
so Σ̂ will change

And, have the df/n issue

Alternative is to simultaneously estimate Σ and β, using REML to
account for fixed effects (df/n issue)
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REML estimation of variances and related quantities

Maximum likelihood is great, but estimates are often biased

Example: Yi ∼ N(µ, σ2)

ML estimate of σ2 is 1
nΣ(Yi − µ̂)2

Unbiased estimate is 1
n−1 Σ(Yi − µ̂)2

subtracting 1 “accounts” for using the data to estimate µ̂ before
estimating σ̂2

can be a serious issue when n small, or many fixed effect parameters

If estimate k fixed effect parameters, unbiased est. is 1
n−k Σ(Yi − µ̂)2

Basic idea for a solution known in 1937 (Bartlett), but widely
popularized in early 1970’s (Patterson and Thompson)

Since Patterson and Thompson, known as REML = REstricted ML or
REsidual ML
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REML

Concept:

Calculate residuals for each obs. using fixed effects model
When the fixed effects have k d.f., the residuals have n − k df.
If you give me n − k residuals, I know the values of the remaining k
residuals

Simple example: Y ∼ N(µ, σ2). Residuals must satisfy Σi (Yi − µ̂) = 0,
so if you give me the first n − 1 residuals, I know the value of the last
residual: Yn − µ = −Σn−1

i=1 (Yi − µ).

So change the data: replace the n obs. by n − k residuals.

no loss of information because the remaining k values are known

Then do ML on the n − k residuals
For the simple example: σ̂2 = 1

n−1 Σ(Yi − µ̂)2, which is the unbiased
estimate!
In general, σ̂2 = 1

n−k Σ(Yi − µ̂)2, which is (again) the unbiased
estimate!
REML accounts for the “loss of df due to estimating fixed effects”
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Alliance: results from spatial linear model

error variance is smaller than in the non-spatial analysis

more precise estimates of treatment differences

parameters of fitted semi-variogram different from empirical sv

Reinforces earlier point about residuals

R (and SAS) use REML to estimate variogram parameters.

REML accounts for the “loss of df from fitting fixed effects”
empirical sv does not

so use empirical sv only to get an idea of starting values

One other huge difference between REML and empirical sv estimate

REML: uses all the data (all distances)
Empirical variogram fitting: only shorter distances
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More points about REML

REML is an easy way to fit many spatial models

estimates of variances/covariances not always unbiased
but usually less biased than ML estimates

How to choose the best model?

Can calculate an AIC statistic from the REML lnL

AIC = -2 lnL + 2k
Interpret just like usual AIC:
Smaller is better (good fit to data with a simple model)

BUT, REML/AIC only evaluates correlation models!

must use same fixed effects model for all models

That’s because AIC only comparable when models fit to the same data
Changing the fixed effects model changes the residuals, so changes the
data that REML uses
Very common mistake!
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More points about REML

AIC only compares the specified set of models

Consider the following results for 3 correlation models:

Model AIC
A 104.2
B 100.1
C 108.4

Tempting to say “B” is the correct correlation model
NO. You only know that B is the best among the set you evaluated
There could easily be a model D with AIC = 75.7 that fits much better
than any you considered.

Use diagnostics to check for anisotropy, outliers, and equal variances

Most models assume isotropy, no outliers, equal variances

Or ignore, because an approximate spatial model is usually good
enough
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Accounting for spatial correlation

Three common approaches

1) geostatistical model: either point or areal data
2) Simultaneous Autoregressive (SAR) Model for areal data
3) Conditional Autoregressive (CAR) Model for areal data

We’ve just talked about the geostatistical model

More choices for areal data

Choice reflects training / background of the user as much as reality
Statisticians: tend towards geostatistical approaches

use CAR models in Bayesian analysis

Spatial econometricians: almost exclusively SAR/CAR models
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Final thoughts on spatial ANOVA/regression

1) Everything I’ve said about ANOVA models applies in
straight-forward fashion to regression models

Both are specific choices of X in Y = Xβ + ε

2) One thing to be aware of:
estimates of β̂ can change whan you change the correlation model

In the usual (independence) ANOVA/regression model:

estimate the trt. means or the β̂’s
use these to estimate the variance σ2

but, the estimates do not depend on the variance

In spatial (or more generally, most correlated data models), GLS
estimates of β̂ depends on Σ.

e.g. in a plant breeder variety trial, adj. for spatial correlation may
change ranking of varieties (because trt means are different).

If you believe you have a good model for the spatial correlation, GLS
ranking is better
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Final thoughts on spatial ANOVA/regression

3) calculating d.f. for treatment means or comparisons of trt. means

In simple problems (independent data), d.f. = n − k

not so when obs. are correlated. If + correlation, each obs. is less
than 1 new piece of information

A very difficult problem.

One approach: refuse to compute df (At least one R package)

Current best, but not great, for models with correlated observations
Kenward-Rogers adjustment.
Spilke et al. 2010, Plant Breeding 129: 590-598

ddfm=kr in SAS
pbkrtest package in R. Does not work with nlme models (e.g., with
spatial correlation)
not too big an issue if many error df

KR also adjusts variances to reduce bias
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Final thoughts on spatial ANOVA/regression

4) When are spatial models likely to work well?

No published guidance (that I know about)
My thoughts:

At least 10 treatments, at least 5 reps per trt
and small scale = patchy spatial variation
May also need to remove blocks from fixed effect part of model
“fights” with the spatial correlation

5) Remember there is a crucial difference between observations and
residuals

Spatial models are for the residuals
Observations may have a very different pattern (next page)
Especially when treatments have large effects

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 4 Spring 2020 34 / 38

Observations or residuals?

50 plots along a transect
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Final thoughts on spatial ANOVA/regression

6, 7) What if the X variable is spatially correlated?

Very common in observational data
Has a couple of consequences

6) Spatial correlation in observations arises because X is correlated

Observations, Y, are spatially correlated
X is spatially correlated
residuals after regressing Y on X have no spatial correlation

No need to adjust for spatial correlation; X has “taken care of it”

Often not completely so

Still some “left over” spatial correlation in the residuals
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Final thoughts on spatial ANOVA/regression

One view of spatial correlation:

an omitted spatially correlated X variable accounts for that “left over”
correlation
Spatial correlation is a surrogate for all omitted variables
spatial correlation model is equivalent to a model with independent
errors and a “spatial X”

Moran eigenvector maps (Griffith and Peres-Neto 2006, Ecology
87:2603-2613)

takes this idea one step further
construct a small set of new variables that account for the spatial
correlation
i.e., move the spatial correlation from the VC matrix of errors into the
fixed effect part of the model
essentially a principal components analysis
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Final thoughts on spatial ANOVA/regression

7) Sometimes get bad news when you include a spatial correlation

Independent errors: regression coefficient for “your favorite” X is large
and precise
Spatial correl.: now small, large se. Your favorite effect has vanished!

Just like what happens when 2 X variables are highly correlated
(multicollinearity)

Spatial: “your favorite” X is highly correlated with the “spatial X”

Difficult issues with interpretation

Various approaches, appropriate practice is not settled

Last two points primarily concern regression

Could be an issue for ANOVA, but only if treatments are very poorly
distributed across the study area
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